DNSSEC Deployment:
A Tutorial

Phil Regnauld
Hervey Allen

February 2009
Manila, Philippines

http://nsrc. org/tutorlaIs/2009/apr|cot/dnssec/

Overview

* We will be talking about DNSSEC

*\We plan to do a live zone signing demonstration and
we will have instructions and tools available so that
you may follow along if you have your own laptop
with SSH (download Putty if using Windows)

* |[f you notice anything that may be incorrect, let us
know right away. This topic is still fairly dynamic.

Contents

* Scope of the problem

* DNS reminders

* Basics of DNSSEC

*|ive demonstration

* Operations

*|ssues (what isn't solved) & other aspects
* Status of DNSSEC today

What's the Problem?

Up until recently, DNSSEC looked like a problem
looking for a solution

- Thankfully the Kaminsky flaw solved this.

What's the problem?

So what are the issues?

DNS Cache Poisoning

~Forgery: respond before the intended nameserver
- Redirection of a domain's nameserver
~Redirection of NS records to another target domain

DNS Hijacking
-~ Response to non-existent domains
~Rogue DNS servers

These have been spotted in the wild — code IS available...

What's the problem?

What risks ?

* See Dan Kaminsky's slides for the extent of the risks
~MANY case scenarios
-Scary stuff:
> MX hijacking
> Entire domain redirection
> Take a large .COM offline
> Complete spoofing of a bank's DNS info

9lll

DNSSEC Quick Summary

* Data authenticity and integrity by signing the
Resource Records Sets with private key

* Public DNSKEYs published, used to verify the
RRSIGSs

* Children sign their zones with their private
key

~ Authenticity of that key established by
signature/checksum by the parent (DS)

* Repeat for parent...

* Not that difficult on paper
~Operationally, it is much more complicated

DNS points of attack

DATA

resolver

~

DNS Data Flow

Points of attack

ATTACK
VECTORS

man in the
middle

zone
file
MASTER text, [1
DB) |
caching : |
resolver Zone - dynamic
(recursive) Transfer 'I \ updates |
I \ |
| SLAVES | \ |
' | \ |
| | \ |
| ! s ooml"in \ |
cache modified rﬁ: asterg spoofed | | corrupted
poisoning data (routina/DoS) updates data

Refresher

DNS reminders

*|SC BIND zone file format is commonly used, and we

will use this notation here.

Zone.

Zone.

Zone.
VWWV. ZoNne.

SOA (2009022401

>R 66

ns. zone.
ns. ot her zone.

1d
12h
1w

1h)

seri al
refresh
retry
expire
neg. TTL

5 server. ot her zone.

1.

2.

3.4

DNS reminders

 Record structure:

NANE [TTL] TYPE DATA (type specific)

host. zone. 3600 A 10. 20. 30. 40
sub. zone. 86400 MX 5 server. ot her zone.

DNS reminders

* Multiple resource records with same name and type
are grouped into Resource Record Sets (RRsets):

mai | . zone. MX |5 serverl.zone. }I?Rset

mal | . zone. VX 10 server 2. zone.

serverl. zone. A 10. 20. 30. 40 }I?Rset

serverl. zone. A 10. 20. 30. 41

— A 10. 20. 30. 42

serverl.zone. AAAA|2001: 123: 456: : 1 } SRl

serverl zone AAAA 2001: 123: 456: : 2 }I?R :
se

server 2. zone. A 11. 22. 33. 44

DNSSEC concepts

DNSSEC overview

DNS SECurity extensions

* Concepts

*New Resource Records (DNSKEY, RRSIG,
NSEC/NSEC3 and NS)

* New packet options (CD, AD, DO)
* Setting up a Secure Zone

* Delegating Signing Authority

* Key Rollovers

DNSSEC concepts

* Changes DNS trust model from one of "open™ and
“"trusting” to one of “verifiable”

* Extensive use of public key cryptography to provide:
- Authentication of origin
-Data integrity
- Authenticated denial of existence

* No attempt to provide confidentiality

* DNSSEC does not place computational load on the
authoritative servers (!= those signing the zone)

* No modifications to the core protocol

- Can coexist with today's infrastructure
> ... kind of (EDNSO)

DNSSEC concepts

* Build a chain of trust using the existing delegation-
based model of distribution that is the DNS

* Note: the parent DOES NOT sign the child zone.
~The parent signs a pointer (hash) to the key used to
sign the data of child zone (important!)

New Resource Records

DNSSEC: new RRs

Adds four new DNS Resource Records*:

1 DNSKEY: Public key used in zone signing
operations.

2 RRSIG: RRset signature

3 NSEC/NSEC3: Returned as verifiable evidence that
the name and/or RR type does not exist

4 DS: Delegation Signer. Contains the hash of the
public key used to sign the key which itself will be
used to sign the zone data. Follow DS RR's until a
“trusted” zone is reached (ideally the root).

*See Geof Huston's excellent discussion at http://ispcolumn.isoc.org/2006-08/dnssec.html

http://ispcolumn.isoc.org/2006-08/dnssec.html

OWNER

IMYZONE.

DNSSEC: DNSKEY RR

600

TYPE FLAGS PROTOCOL ALGORITHM

|

\

DNSKEY

256

3

S| (

)

, key i1d

AWEAAdev I Xb4Nx FnDFT0Jg9d/ | RndwzM YTu

5535

— KEY ID

- FLAGS determines the usage of the key (more on this...)
- PROTOCOL is always 3 in the current version of DNSSEC

- ALGORITHM can be:

0 — reserved

1 — RSA/MD5 (deprecated)
2 — Diffie/Hellman
3 — DSA/SHA-1 (optional)

4 — reserved

5 — RSA/SHA-1 (mandatory)

PUBLIC KEY
(BASE64)

DNSSEC: DNSKEY RR

* There are in practice at least two DNSKEY s for every
Zone:

-Originally, one key-pair (public, private) defined for
the zone:
>private key used to sign the zone data (RRsets)
>public key published (DNSKEY) in zone
>DS record (DNSKEY hash) published in parent
zone, and signed in turn with rest of data

* Problem:

~to update this key, DS record in parent zone needs
to be updated...

>|ntroduction of Key Signing Key (flags = 257)

DNSSEC: KSK and ZSK

* To allow for key updates (“rollovers™), generate two
keys:
~Key Signing Key (KSK)
>pointed to by parent zone (Secure Entry Point), in
the form of DS (Delegation Signer)
>used to sign the Zone Signing Key (ZSK)
-Zone Signing Key (ZSK)
»>signed by the Key Signing Key
>used to sign the zone data RRsets
* This decoupling allows for independent updating of
the ZSK without having to update the KSK, and
iInvolve the parent.

* Resource Record Signature

DNSSEC: RRSIG

~lists the signatures performed using the ZSK on a

given RRset

t est. nyzone

\ J

TYPE

TYPE COVERED AL‘GO # LABELS ORIG. TTL SIG. EXPIR.

L

600 [RRSL G /[A] [5

2

600

20090317182441 |

¥

2 /J_zaoaoz;l.s;l.auzl.ﬂ

~pS

KEY ID

L SIGNER NAME

/

SIG. CREAT.

r OX] sOmdI r 576VRAol Bf bkOTPt xvp+1PI OXH
p1nmvwW R3u+ZulLBGxkaJdkor EngXuvThV9egBC

" SIGNATURE = SIG(records + RRSIG-

RDATA

- SIG)

DNSSEC: RRSIG

* By default:

- Signature creation time is 1 hour before

- Signature expiration is 30 days from now

~Needless to say, proper timekeeping (NTP) is strongly
recommended

* What happens when the signatures run out ?

-SERVFAIL...
~Your domain effectively disappears from the Internet
~... more on this later

* Note that the keys do not expire.

* Therefore, reqular re-signing is part of the operations

process (not only when changes occur)
~the entire zone doesn't have to be resigned...

DNSSEC: NSEC/NSEC3

*NSEC - proof of non-existence

* Remember, the authoritative servers are serving
precalculated records. No on-the-fly generation is
done.

“NSEC provides a pointer to the Next SECure record
In the chain of records.
>“there are no other records between this one and
the next”, signed.
~The entire zone is sorted lexicographically:

nyzone.
sub. nmyzone.
test. nyzone.

DNSSEC: NSEC/NSEC3

nmyzone. 10800 NSEC test.nyzone. NS SOA RRSI G NSEC DNSKEY

myzone. 10800 RRSI G NSEC 5 1 10800 20090317182441 (
20090215182441 5538 nyzone.

ZTYDLeUDM psp+l W8gcUVRKI r 7Knk VS5 TPH
KPsxgXCnj nd8gk+ddXl r Qer Ueho4RTg8CpKV

*Last NSEC recond points back to first.

* Problem:
-Zone enumeration (walk list of NSEC records)
~Yes, DNS shouldn't be used to store sensitive information,
but future uses may require this “feature”

DNSSEC: NSEC/NSEC3

*|f the server responds NXDOMAIN:

~One or more NSEC RRs indicate that the name (or a
wildcard expansion) does not exist

*|f the server's response is NOERROR:
-~And the answer section is empty
-The NSEC proves that the TYPE did not exist

DNSSEC: NSEC/NSEC3

 \What about NSEC3 ?

~We won't get into this here, but the short story is:

> Don't sign the name of the Next SECure record, but a hash of it
- Still possible to prove non-existence, without revealing name.

> This is a simplified explanation. RFC 5155 covering NSEC3 is
53 pages long.
~Also introduces the concept of “opt-out” (see section 6 of
the RFC) which has uses for so-called delegation-centric
zones with unsigned delegations.

DNSSEC: DS

* Delegation Signer
 Hash of the KSK of the child zone

* Stored in the parent zone, together with the NS RRs
iIndicating a delegation of the child zone

* The DS record for the child zone is signed together

with the rest of the parent zone data
NS records are NOT signed (they are a hint)

nmyzone. DS 61138 5 1
F6CD025B3F5D0304089505354A0115584B56D683
myzone. DS 61138 5 2
CCBCOB557510E4256E88C01BO0B1336ACAEDGFEOB8C826
8CC1AASFBFOO0 5DCE3210

DNSSEC: DS

* Two hashes generated by default:

-1 SHA-1 MANDATORY
-2 SHA-256 MANDATORY

DNSSEC: new fields

* Updates DNS protocol at the packet level

* Non-compliant DNS recursive servers should ignore
these:

- CD: Checking Disabled (ask recursing server to not perform
validation, even if DNSSEC signatures are available and
verifiable, i.e.: a Secure Entry Point can be found)

~ AD: Authenticated Data, set on the answer by the validating
server if the answer could be validated, and the client requested
validation

* A new EDNSO option
~DO: DNSSEC OK (EDNSO OPT header) to indicate client
support for DNSSEC options

Live demo using dig

Security Status of Data

(RFC4035)

e Secure

- Resolver is able to build a chain of signed DNSKEY and DS RRs from a
trusted security anchor to the RRset

* Insecure

- Resolver knows that it has no chain of signed DNSKEY and DS RRs from any
trusted starting point to the RRset

* Bogus

- Resolver believes that it ought to be able to establish a chain of trust but for
which it is unable to do so

- May indicate an attack but may also indicate a configuration error or some
form of data corruption

* Indeterminate
-~ Resolver is not able to determine whether the RRset should be signed

Signing a zone...

Enabling DNSSEC

* Multiple systems involved

- Stub resolvers
>Nothing to be done... but more on that later

-Caching resolvers (recursive)
>Enable DNSSEC validation

- Authoritative servers
>Enable DNSSEC logic (if required)
-Signing & serving need not be performed on same
machine
- Signing system can be offline

Signing the zone

1.Generate keypair

2.Include public DNSKEYs in zone file
3.Sign the zone using the secret keys
4.Publishing the zone

5.Push DS record up to your parent
6.Walit...

1. Generating the keys

Cenerate ZSK
dnssec- keygen -a rsashal -b 1024 -n ZONE nyzone

Cenerate KSK
dnssec- keygen -a rsashal -b 2048 -n ZONE -f KSK myzone

This generates 4 files:
Knyzone. +005+i d of zsk. key
Knyzone. +005+i d of zsk.private
Knyzone. +005+i d_of ksk. key
Knyzone. +005+i d_of ksk. private

2. Including the keys into the
zone

Include the DNSKEY records for the ZSK and KSK into the
zone, to be signed with the rest of the data:

cat Knyzone*key >>nyzone

or add to the end of the zone file:

$I NCLUDE “ Knyzone. +005+i d_of zsk. key”
$I NCLUDE “ Knyzone. +005+i d_of ksk. key”

3. Sighing the zone

Sign your zone

dnssec-si gnzone nyzone

* dnssec-signzone will be run with all defaults for signature duration,
the serial will not be incremented by default, and the private keys to
use for signing will be automatically determined.

* Signing will:
- Sort the zone (lexicographically)

~ Insert:
~NSEC records
- RRSIG records (signature of each RRset)
- DS records from child keyset files (for parent)

-~ Generate key-set and DS-set files, to be communicated to the
parent

4. Publishing the signhed zone

* Publish signed zone by reconfiguring the nameserver
to load the signed zonefile.

* ... but you still need to communicate the DS RRset in a
secure fashion to your parent, otherwise no one will
know you use DNSSEC

5. Pushing DS record to parent

Securely communicate the KSK derived DS record set to
the parent

e ... but what if your parent isn't DNSSEC-enabled ?
~manually distributing your public keys is too
complicated

—could there be an easier mechanism
Until The Root Is Signedms) ?

Enabling DNSSEC in the resolver

* Configure forwarding resolver to validate DNSSEC

-not strictly necessary, but useful if only to verify that
your zone works

* Test...
* Remember, validation is only done in the resolver.

Summary

* Generating keys

e Signing and publishing the zone
* Resolver configuration

e Testing the secure zone

Questions so far ?

So,

DATA

resolver

~

ATTACK
VECTORS
£

ALLERRRRRRRnnnnn

what does DNSSEC
protect ?

zone
file
MASTER text, [1
DB) |
caching - |
resolver Zone — dynamic
(recursive) TranSfer .I \ updates |
| I |
| SLAVES | \ |
| | \ |
I I I \ I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII§ S oo.lf-in \ I
man in the| £ cache modified rlcl:asterg spoofed corrupted
middle ; poisoning data (routing/DoS) updates data
I T i LG
(TSIG)

PROTECTION BY DNSSEC

What doesn't it protect ?

* Confidentiality
- The data is not encrypted

 Communication between the stub resolver (i.e:
your OS/desktop) and the caching resolver.
~For this, you will need TSIG, or you will have to

trust your resolver 100%
~... it performs all validation on your behalf

So why isn't it implemented ?

Many different reasons...

-It's "complicated”. Requires more work. Tools
will help with this. Operational experience is the
keyword.

~Risks of failure (failure to sign, failure to update)
what will result in your zone disappearing

-Specification has changed several times since
the 90s

“NSEC Allow(ed|s) for zone enumeration.

-Until Kaminsky, maybe not obvious enough why
we needed DNSSEC.

—The root (.) is not yet signed - it's political...

Delegating Signing
Authority

Using the DNS to Distribute Keys

* Secured islands make key distribution problematic

* Distributing keys through DNS:

~Use one trusted key to establish authenticity of other
keys

-Building chains of trust from the root down
~Parents need to sign the keys of their children

*Only the root key needed in ideal world

~Parents always delegate security to child

~... but it doesn't help to sign if your parent doesn't sign,
or isn't signed itself...

Walking the Chain of Trust
(thank you RIPE :)

Locally Configqured

Trusted Key . 8907

(root) .
DNSKEY (..) 5TQ3s.. (8907) ; KSK
DNSKEY (..) lasE5.. (2983) ; ZSK
RRSIG DNSKEY (..) 8907 . 69HwI..
net. DS 7834 3 labls..
RRSIG DS (..) . 2983
net.
net. DNSKEY (..) g3dEw.. (7834) ; KSK
DNSKEY (..) 5TQ3s.. (5612) ; ZSK
RRSIG DNSKEY (.) 7834 net. cMas..
apricot.net. DS 4252 3 1labls..
RRSIG DS (..) net. 5612
apricot.net.

apricot.net. DNSKEY (..) rwx002.. (4252) ; KSK
DNSKEY (..) sovP42.. (1111) ; ZSK

RRSIG DNSKEY (..) 4252 apricot.net. 5t...

www.apricot.net. A 202.12.29.5
RRSIG A (..) 1111 apricot.net. a3...

Ok, but what do we do
Until The Root Is Sighedr ?

e Use of Trust Anchors

~A DNS resource record store that contains SEP keys
for one or more zones.

* Two Initiatives exist to provide these Trust Anchor
Repositories.

—for TLDs
—-for other domains

* Note: this is our interpretation of the current situation, and
does not necessarily reflect the position of the parties
iInvolved.

Trust Anchor Repositories...
DLV and ITAR

DLV: DNSSEC Lookaside Validation

-Alternative method for chain of trust creation and
verification in a disjointed signed space (islands of trust)
DLV functions automatically (if the resolver is
configured to do so) by looking up in a preconfigured
“lookaside validation” zone
>no need to fetch a list of anchors
>|SC Initiative: https://www.isc.org/solutions/dlv

https://www.isc.org/solutions/dlv

Trust Anchor Repositories...
DLV and ITAR

ITAR: Interim Trust Anchor Repositories
~Interim Trust Anchor Repository
~IANA Trust Anchor Repository (Until The Root Is
Signedm))
>|s targeted at TLDs
>Lookup Is not automatic
~list of anchors must be retrieved (one more
operational constraint)
>Already a beta program, several TLDs have already
registered
>https://itar.ilana.org/

https://itar.iana.org/

Trust Anchor Repositories...
DLV and ITAR

* See the summary and discussions here:

~“Using DNSSEC today” http://www.links.org/?p=542
-"“DNSSEC with DLV" http://www.links.org/?p=562

e ... the conclusion seems to be that DLV and ITAR
complement each other

http://www.links.org/?p=542
http://www.links.org/?p=562

Operational Aspects

Sighature expiration

* Signatures are per default 30 days (BIND)

* Need for regular resigning

-To maintain a constant window of validity for the
signatures of the existing RRset
- To sign new and updated RRsets

 Who does this ?

* The keys themselves do NOT expire...
-But they do need to be rolled over...

Key Rollovers

* Try to minimise impact
-Short validity of signatures
~Regular key rollover
* Remember: DNSKEYs do not have timestamps
~the RRSIG over the DNSKEY has the timestamp
* Key rollover involves second party or parties:
-State to be maintained during rollover
~Operationally expensive

Key Rollovers

* Two methods for doing key rollover

- pre-publish
—double signature

« KSK and ZSK rollover use different methods
(courtesy DNSSEC-Tools.org)

Key Rollovers

* ZSK Rollover Using the Pre-Publish Method

1. wait for old zone data to expire from caches (TTL)

2. sign the zone with the KSK and published ZSK

3. wait for old zone data to expire from caches

4. adjust keys in key list and sign the zone with new ZSK

Key Rollovers

* KSK Rollover Using the Double Signature Method

~N O O A WO N -

. wait for old zone data to expire from caches

. generate a new (published) KSK

. wait for the old DNSKEY RRset to expire from caches
. roll the KSKs

. transfer new DS keyset to the parent

. wait for parent to publish the new DS record

. reload the zone

Signing the Root

* The current state of things is viewable here:
~http://www.ntia.doc.gov/DNS/dnssec.html

http://www.ntia.doc.gov/DNS/dnssec.html

Deployment hurdles
and other issues

Lack of operational experience...

Everyone talks about DNSSEC

* ... but few people have real hands-on experience
with day-to-day operations

*One can't just turn DNSSEC on and off

-stopping to sign a zone isn't enough
~-parent needs to stop publishing DS record +
signatures

* Failure modes are fairly well known, but recovery
procedures cumbersome and need automated help

DS publication mechanisms

No established procedure exists for communicating
DS records to the parent

-SSL upload ?
-PGP/GPG signed mail ?
-EPP extension ?

* Remember, this should happen automatically and reliably

EDNSO and broken firewalls,
DNS servers

DNSSEC implies EDNSO

-Larger DNS packets means > 512 bytes
~EDNSO not always recognized/allowed by firewall
- TCP filtering, overzealous administrators..

* Most hotels (including this one) do not allow DNSSEC
records through

Application awareness

This could be a long term pain...
* Application's knowledge of DNSSEC ... is non-existent

~Users cannot see why things failed
~Push support questions back to network staff
>Compare with SSL failures (for users who can read...)

* There are APIs — currently 2
- http:/ftools.ietf.org/id/draft-hayatnagarkar-dnsext-validator-api-07.txt
- http://www.unbound.net/documentation/index.html

>Firefox plugin example (pullup from DNS layer to user)
>What if applications explicitly set +CD ?

Corporate environments

*Split DNS anyone ?
~How do we deal with:

WWW. cOor p. net . A 130.221.140.4 ; public

and

WWW. cOor p. net . A 10.2.4.6 , private

*“Oh but you shouldn't do that, that's Not The Right
Way!”
—... like NAT ?
~... and NSEC enumeration ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

